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Ready; Catalysis Nonlinear Effects

In an enantioselective reaction, expect product ee to be linearly related to catalyst ee:
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Relationship between product ee and catalyst (or reagent) ee:
Called positive nonlinear effect (+NLE) if ee product > ee catalyst
Called negative nonlinear effect (-NLE) if ee product < ee catalyst
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These effects can be quite large
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21% ee DAIB gives 96% ee product!

Reasons to care:

Practical consequences:
If low ee cat way cheaper than high ee (+NLE)
If optically pure cat unavailable (+NLE)
Danger of extrapolating from low ee cat (-NLE)
Can have large impact on rates

Fundamental issues:
Can support or refute a mechanism
Provides more complete picture of reaction
May relate to origin of biological asymmetry
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The ML, model
Most popular model to describe nonlinear effects; metrics even used for other models (e.g. reservoir)

Assume M is metal, Ly is (R)-Ligand, Lg is (S)-Ligand, and active species is ML,
The following equilibrium is established:

| diastereomers ‘
|enantiomers |

M+ Lg + Lg —> MLRLr + MLglLg MLRLg
X y z
lkRR lkss lkRS
R-product S-Product racemic product

ee (-€emax)
X,y and z are mol% (Sma) e

K = z%/xy

) 1+
ee = ee ee -
prod max cat 1+ gB

'Keecat2 + ['4Keecat2 + K(4eecat2)]1/2

p=2z/(x+y) =

. g = krs/krr
Important points:
p describes relative stability of homo and hetero chiral catalyst (but K is more useful)

g describes relative reactivity of homo and hetero chiral catalyst

f and x,y,z depend on ee.,;t and K
The origin of nonlinearity is g. The reactivity of the meso catalyst must be different to see a NLE,

i.e. g <1 (+NLE)org> 1 (-NLE)
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T

g — reactivity

p — stability

K —related to 8
K=4
(statistical)

100
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Biggest +NLE when g = 0 (inactive meso form)
K affects +NLE more than —NLE

Can use curves to determine ‘effective ee’
e.g. if for K= 9, g = 0, nominally 50% ee catalyst performs like 87% ee catalyst
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Example: Sharpless asymmetric epoxidation
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Nonlinear effects in a stoichiometric reaction:

i : OH
Ketone reduction with DIP-CI
_ - X
o CH,
Cl
‘\ (+)-lpc,BCI \ =
CHs > B — '
OI
\ ¥
Me N
Ipc,BCI aka DIP-CI - Ph -
1
0.8 |- B
| 1 H
o= Me(axial)
06 |
Ph (equitorial)
04 | potential stereochemical
L ,‘ B experimental Eepmi model
[ ," calculated eepru: |
0.2 B experimental €8 e |
[ A PSP calculated ee | | L. )
— Original reduction: Brown, JOC, 1985, 5446
0 e NLE Data: Merck process, TL, 1997, 2641
0 0.2 0.4 0.6 0.8

NLE analysis: Blackmond, JACS, 1998, 13349
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NaBH, + BCl; _ _ ~ _
> T " Eﬁ @K '
4 B S
+ CiB I 15 ol I _ECI
(+’+) (+1_) (_1_)
7 k(++)lketone k(+-)lketone K lketone
~100% (S)-alcohol rac-alcohol ~100% (R)-alcohol
K=49 = [(+—-)]2 = Ki+/K++)= 0.1
(O] 97 e
examples: OH OH OH OH
S
D B Cr -
= =
ee values
DIP-CI from >99% ee pinene: 97 90 87 91
From from 85% ee pinene: 96 89 88 93

Notes: mixtures of (+,+) and (-,-) DipCI do not show NLE
97% ee pinene: $500/100g; 87% ee pinene: $60/100g
Product ee will decrease with conversion in stoichiometric reaction displaying +NLE
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Model 2
The reservoir model: inactive dimers \ \ /
N\ Et .‘\‘N\ /Et
0 H / 7
RtaZn Zn + N
H  — / \O .""O/ O,
(-)-DAIB O\Zn/ \Zn/
Et” Et7ON
N /
8 y4 \ \
N{CHa)a
(=)-DAIB = @: l
OH
100 — I — \ /
or / (S) -—— Et—Zn/ + e /Zn—Et —> (R)
r \ "ty
I el 4 N\ °
40 A
‘- [+ _ 5000
> T . \ [+ )]
® Et.Zn
o = M;Zn /

o% 20 20 80 80 100

Minor enantiomer sequestered as inactive dimer
Monomer is active catalyst
95% ee product from 15% ee catalyst!!
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Structural basis for dimer stability Homochiral dimer
(less stable)

Zn—O
O—Zn

methyls cis

ligands cis

Heterochiral dimer
(more stable)

methyls trans

oL N\~

. Zn
Nt
(410 W
Figure 19, Three-dimensional models of the dimes of (—)-DAIB-methyl-

#inc: (=) (= )-10 (homochiral} and (=)« (+)-10 (heterochiml ).

ligands trans

Noyori, JACS, 1998, 9800
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Reservoir model in glyoxylate ene reactions
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Mikami, Tet. 1992, 5671
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Equilibrium between active monomer and inactive dimer. Minor enantiomer is sequestered.

1 o®
= O X (@) X

N N~

(R)-product i _Ti_ —— (S)-product

-
= | o X : O
LK ¢

((R)-BINOL)TiX5 ((S)-BINOL)TiX5

[

[((R)-BINOL)TiX5]> ((R)-BINOL)TiX5((S)-BINOL)TiX,
35 times more stable than homochiral dimer
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Structural basis for dimer stability with (BINOL)TiX,

cis-pseudo-axial

N

O—T|~ \/L
\= naphthyl TI—O

homochlral

trans-pseudo-axial <

& |—O
heterochiral

(9+(RA)-25

Calculated structures for [(BINOL),TiCl,],
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Model 3

Transition-state dimers Q (salen)CrCl

—N\C/N_
r
t-Bu o” &o t-Bu

/ \ t-Bu t-Bu (cat) N‘z’, OTMS

> .
TMSN;, /—<
R R R
100

Product ee

0 25 50 75 100

Catalyst ee Jacobsen, JACS, 1996, 10924
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For ee < 100%, 4 possible transition states:
Recall bimetallic mechanism:

(R,R)-CrN;3 + (R,R)-Cr(EpoX) — +X%ee

N3 DO N3
\_Y (R,R)-CrN; + (S,S)-Cr(EpoX)
—> 0%ee
(S,5)-CrN3 + (R,R)-Cr(EpoX)
(S,S)-CrN3 + (S,S)-Cr(EpoX) —>» X%ee
Imagine the following:
Meso reactions very slow
catalyst e.e. = 70% (85:15)
/d[(+)—product] )
\ at ) [.85]
= ——— = 321 ) 9%%eel
/ dI(-)-product] [0.15]
)

note k.41, [epoX], [azide] same for both homo-chiral transition states

In practice, 70% ee catalyst gives ~80% ee product, so significant, but minor, contribution from meso T.S.
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Not all examples fit neatly into the models
/\/ﬁ\ O (R)-BINOL
M(OTf)
X N% ¥ D TMP, MS3A [ o
O . “, N
L/ additive /”/ \(
o)
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(2S,3R)-
Additives:
N \ O )S/‘
CHj; Ph
TMP AOD PAA
M Sc, -78 °C

] ¥ 2S,3R)-product
a0 { / /./ 2R 38) prOdUCt
A
ol : *<— 'V,'f_ Yb, +AOD, 0 °C

46 Yb, +PAA, 40 °C
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TR e e Kobayashi TL, 1994, 6325
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Paying the piper: Kinetic repercussions of NLE’s

Relationship between Rate and EE in ML, Model

1 100
a g=0.01(strong +NLE) g =100 (strong -NLE) b

80

08 |
06 | 60 |
0.4 40

0.2 20

Hormalized Reaction Rate
Normalized Reaction Rate

fen =1 lae =1

] 02 04 06 o8 1 0 ' 0.2 04 0.6 0.8 1
EEcat €€cat
Positive NLE will be associated with decrease in rate.
Rate drop and +NLE both a result of less-active dimeric species — i.e. you
sacrifice one (R)-cat to sequester one (S)-cat
(note: %ee = %optically pure; remainder racemic)

Negative NLE will be associated with increase in rate.
-NLE comes from more-active dimers — i.e. (rac)-catalyst is faster than optically pure

Blackmond, Accts, 2000, 402
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Asymmetric amplification and Autocatalysis

Autocatalytic reactions are one in which the product catalyzes its own formation.

A simple example: Ester hydrolysis yields an acid; ester hydrolysis is acid-catalyzed.
Expect exponential increase in rate with time.

@) O
Hzo )J\ O
CH —_— H
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o --H
) O/ 3 HZO O/ O/ ——
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Might think this could be a mechanism for propagating optical activity. Small amount of high ee
material leads to high ee catalyst catalyzes formation of more high ee catalyst...
Not so.

Consider a reaction in which 100% ee catalyst gives 99.9% ee product and the reaction is
autocatalytic

Catalyst (100% ee

1 turnover Product (99.9%) + catalyst (100%) = total (99.95%)

repeat repeat> repeat> repeat>

> 99.85% ee racemic

If autocatalysis is coupled to a positive nonlinear effect, can see increasing rate and
increasing ee

S.M. inactive dimer
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Pyrimidine carboxaldehyde/R,Zn system shows asymmetric amplification:
OZn(iPr)

0 j/
S ‘\ ca
NI AN H + iPr,Zn 5% ee j/Y
L §
N™ 4

10/" ee )add 1, iPryzn

||O

[0)
Soai, Accts, 2000, 382 57% ee
o _ _ 81% ee
Idea for origin of biological asymmetry: )
unknown source 88% ee
@]
low ee catalyst
> OH
R H /'\
R R'
Q higher ee QH
)J\ > /k
R H R R’

even higher ee

O
)]\ »  psyco high ee

R H
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Extreme examples of asymmetric amplification

OH
O 1 mol% OH
- I\ 0.1% ee
'
)l\ _ iProZn )l\ _
H3C N H5C N
70% ee

Connection between high ee and extraterrestrial chirality source:

A _RCHO _
/\ |PrZZn
racemlc 5% ee >99.5% ee

t-Bu (unmeasurable)

CPL = circularly polarized light
asymmetric photolytic destruction of alcohol

Soai, JACS, 2005, 3274
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Origin of Asymmetric Amplification in Soai's system
Blackmond, JACS, 2001, 10103

experimental data

Rate 1009 ee) = 2 X Rateacemic) Inconsistent with reservoir model (postulates reactive monomers,
preferential formation of inactive meso dimers)

Propose statistical mixture of reactive dimers; meso is unreactive:

R+ S
RR —— RS —— S,S K=4
Predicted ratio for R-Product no reaction S-product
70% ee R: 72 26 2.3
product of 94% ee Y )\
o/Z:n\N ~ >N
N |
L
Both requirements for asymmetric ampilfication fulfilled: N _0
n

-autocatalytic N A
-+NLE )\
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Thermodynamic control of asymmetric amplification
in amino acid catalysis

Martin Klussmann®, Hiroshi lwamura't, Suju P. Mathew’, David H. Wells Jr't, Urvish Pandya’, Alan Armstrong’
& Donna G. Blackmond'*
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Nature, 2006, 441, 621
See alsoHayashi, ACIEE, 2006, 4593





