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Ready; Catalysis             Kinetics-1 

There are only two important things in chemistry, kinetics and thermodynamics. 
And, exp(-ΔG/RT) = k1/k-1, so there’s really only one thing. 
 
Kinetics provides information about the transition state of a reaction.   
 
We’ll use a simple example to learn the basic tools, then look at more 
applications to catalysis.   

Crude Data 
[EtI] = [NaCN]
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1st step:  measure change in 
concentration over time under known 
conditions. 
 
Common techniques: 

 GC 
 UV/Vis 
 NMR 
 IR 
 HPLC   

Note: data for EtCN are hypothetical 
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Crude Data   
[EtI] = [NaCN] 

[EtCN] 

An aside on reaction deceleration  
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Data can be plotted to determine reaction’s overall order: 
Crude Data (0th Order) 

[EtI] = [NaCN]

R2 = 0.6539
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2nd order plot
[EtI] = [NaCN]

R2 = 1
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0th:  -d[A]/dt = k à [A] = kt 
 
1st: -d[A]/dt = k[A] à [A] = exp(kt) 

     ln[A] = kt 
 
2nd: -d[A]/dt = k[A]2 à 1/[A] = kt 
(also for k[A][B] if [A] = [B] 

1st order plot

R2 = 0.9507
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2 common methods to determine order in individual components.   
Pseudo 1st-order:  one component in huge excess (its concentration ~ constant) 
Collect data at various excessive concentrations 

Pseudo-first Order
[NaCN]>>[EtI]=1
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Note [EtI] =1 à 0, but [NaCN] = 10 à 9 up to 200 à 199 
Rate = k[NaCN][EtI] ~ k[NaCN]0[EtI] = kobs[EtI] 
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Pseudo-first Order
[NaCN]>>[EtI]=1
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Pseudo-first Order
[NaCN]>>[EtI]=1

y = -199.36x - 0.0009
y = -99.363x - 0.0018

y = -49.363x - 0.0036

y = -24.362x - 0.0073

y = -9.3583x - 0.0187
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Replot data in 1st order coordinates 
Slope of line = kobs 

Plot slope v [NaCN] 

Rxn is 1st order in NaCN!! 
But…is 10-200 equiv NaCN really 
representative?? 
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Initial Rates
[EtI]=1
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An alternative is the method of ‘initial rates’ 
Keep one component constant (EtI) and vary the other (NaCN), but keep close 
to synthetic conditions 
 
Look at the first 10% of the reaction.  Assume concentrations don’t change 
much at low conversion.  i.e. v = k[EtI][NaCN] ~ k[EtI]0[NaCN]0(c = 0 à 10%) 
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Initial Rates
[NaCN]~[EtI]=1
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Notes 
Need more data points/time for initial rate 
 
Data looks pretty linear for first 10% 
 
Slope of best-fit line is kobs 
 
Kobs = k[NaCN][EtI] and [EtI] was constant 
 
Again, the rxn is first order in [NaCN] 
But…we ignored 90% of the reaction. 

Initial Rates
1st 10%
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Case Study 1:  Bergman, JACS, 1981, 7028 

(OC)3Mo

Migratory insertion

CH3

PR3
(OC)2Mo

O

CH3PR3
Confusion:  Huge solvent effects on rate and (in related systems) stereochemistry

What's the mechanism??

concerted attack/migration mechanism:

(OC)2Mo
CO

CH3

R3P

(OC)2Mo

O

CH3PR3
rate = k[1][PR3]

k

1

(OC)2Mo
CO

CH3

(OC)2Mo

O

CH3

k1

R3P

(OC)2Mo

O

CH3PR3

k-1

k2

pre-migration mechanism

rate =
k1k2[1][PR3]
k2[PR3] + k-1

notes:  you should be able to derive 
these equations. 
Why not consider an associative 
mechanism?

hypothetical curves
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Case Study 1:  Bergman, JACS, 1981, 7028 

Actual data Rxn in THF and 3-MeTHF look like 
superposition of concerted attack and pre-
migration 
 

Rxn in 2,5 Me2THF only shows concerted attack.  
How to explain?  Solvent assistance. 

(OC)2Mo
CO

CH3

(OC)2Mo

O

CH3

k1

R 3
P
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O

CH3PR3

k-1

k2

rate =
k1k2[1][PR3][S]
k2[PR3] + k-1

S
S

but [S] is constant, so 
kinetically invisible
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Case Study 1:  Bergman, JACS, 1981, 7028 

(OC)2Mo
CO

CH3

(OC)2Mo

O
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R 3
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(OC)2Mo

O

CH3PR3

k-1

k2

rate =
k1k2[1][PR3][S]
k2[PR3] + k-1

S
S

but [S] is constant, so 
kinetically invisible

Mechanism predicts 1st order dependence on THF.  
Do expt in 2,5-Me2THF, add THF (note only minor 
change in dipole 
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cat. OsO4-1
K3Fe(CN)6

OH

OH

96% ee
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Case Study 2:  Corey, JACS, 1996, 319 

Previous work (JACS 1993, 12226) 
had shown 1st order in OsO4-L, zero 
order in Fe(III) 
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Case Study 2:  Corey, JACS, 1996, 319 

V =
kcatK[Os]T[olefin]
1 + K[olefin]

= kcat[Os]T[olefin]
Km + [olefin]

~

These are saturation kinetics!!. Same 
as many enzymes and Lewis-Acid 
cat Rxns 

Proposed structure of L*OsO4
(olefin) for allyl benzoate 
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Binding appears correlated to selectivity in asymmetric dihydroxylation 
Poor correlation between rate and selectivity  
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Case Study 2:  Corey, JACS, 1996, 319 

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6

Km
ee

Ready; Catalysis             Kinetics-12 

Case Study 3:  Jacobsen, JACS, 1996, 10924 

The reaction 

The data: 
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Case Study 3:  Jacobsen, JACS, 1996, 10924 

Rate = k[(salen)Cr]2[epoxide]-1[Azide]0 

2 Cr’s involved in RDS Epoxide inhibits rxn!! Azide either (a) involved 
after RDS or (b) present 
in ground state 
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O
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HO
N3

Ready; Catalysis             Kinetics-14 

Case Study 4:  Jacobsen, JACS 1999, 6086 and unpublished work 

The rxn: 

Data: 
log log plot

y = 2.0577x + 3.8479
R2 = 0.9947
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Rate = kobs[Co]2 

V = k[A]n 

log(V) = log(k[A]n) = n*log(k[A]) 
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Case Study 4:  Jacobsen, JACS 1999, 6086 and unpublished work 

Epoxide Order
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ArOH order
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Kd

rate   =   kcat[Co]t2[Epox]

kcat

Kd[ArOH]+[Epox]
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Case Study 4:  Jacobsen, JACS 1999, 6086 and unpublished work 
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Case Study 5:  Stahl, JACS 2002, 766 

The rxn 

The data: DMSO critical, but is not reduced (O2 required) or oxidized (no 
dimethyl sulfone is formed) 
 
2 formed:O2 consumed = 2 (O2 is a 4 e- oxidant here) 

Under the rxn conditions, disproportionation observed (sometimes referred to 
as ‘catalase activity’) 

Pd black (precipitated Pd metal) observed during course of reaction 

Ready; Catalysis             Kinetics-18 

Case Study 5:  Stahl, JACS 2002, 766 

Also:  Pd black correlates with rate decrease 
Rate independent of [ROH] 
 
Conclude oxidation of Pd is rate limiting 
 
Predicts rate = k[O2][Pd] (i.e. linear increase in rate with [Pd]) 

Propose catalyst decomposition is time-dependent.  Decomposition is 
bimolecular;  more pronounced at higher [Pd] 
Described by kdec competitive with kcat 
Eq 7 models data in trace B  
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Case Study 5:  Stahl, JACS 2002, 766 

Integrated form models 
experimental data 

Proposed mechanism 

fast 
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Case Study 6:  Foa et al., J. Chem Soc. Dalton, 1975, 2572. 

R

Cl

+ Ni(PPh3)4

R

NiCl(PPh3)2

The rxn

The data 
1st order in [ArCl]

R2 = 0.9946
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Case Study 6:  Foa et al., J. Chem Soc. Dalton, 1975, 2572. 

Proposed mechanism

Ni(PPh3)4 Ni(PPh3)3+ PPh3 K' > 10

Ni(PPh3)2Ni(PPh3)3 + PPh3 K < 10-6

Ni(PPh3)3
k1+ ArCl PPh3(PPh3)2NiAr(X) +

Ni(PPh3)2
k2+ ArCl (PPh3)2NiAr(X)

Rate = k1[PPh3] + k2K
[PPh3]

[Ni]T[ArCl] =  kobs[Ni]T

k' =
 kobs

[ArCl]
= k1[PPh3] + k2K

[PPh3]

k'[PPh3] = k1[PPh3] + k2K

plot  k'[PPh3]  vs.  [PPh3]

For p-Cl2Ph: 
k1 = 1 x 10-4 

Kk2 = 1.1 x 10-5 

k2 ~ 10 
 
So Ni[PPh3]2 105x more reactive than Ni
[PPh3]3, but much less prevalent  
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Coates, JACS, 2007, 4948 

OR

R' 1 (0.1-2 mol%), CO (850 psi),
90 oC, dioxane

R R'

OO O

High yields for terminal and internal epoxides; stereospecific: 
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Coates, JACS, 2007, 4948 
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Unusual kinetics observed: 

Anhydride formation displays induction period; no anhydride formed until epoxide consumed. 
Independent rxns similar in rate; show first order dependence on catalyst. 

Coates, JACS, 2007, 4948 
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OR

R' 1 (0.1-2 mol%), CO (850 psi),
90 oC, dioxane

R R'

OO OO

R R'

O

β-lactone

Rate (lactone)  = k[epox]0[CO]0[catalyst]1[Solvent]1 
Rate (anhydride) = k[lactone]1[CO]0[catalyst]1[Solvent]-1 

Epoxide (and solvent) inhibit lactone à anhydride 
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Coates, JACS, 2007, 4948 
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Resting state in presence of epoxide (no open LA sites) 

Resting state, 
no epoxide 

Ready; Catalysis             Kinetics-Van’t Hoff 

Recall:  ΔG = -RT*ln(K)          and             ΔG = ΔH – TΔS 
 
Merging and rearranging gives the Van’t Hoff Equation:  ln(K) = (-ΔH/R)(1/T) + (ΔS/R) 
à Ln(K) vs. 1/T gives ΔH and ΔS 

Hartwig, JACS, 2006, 9306 

n.b. increasing temperature 
decreases contribution of ΔH 



15 

Ready; Catalysis             Kinetics-Erying Equation 

The Eyring equation: determination of ΔH‡ and ΔS‡. 

Supports associative mechanism 
(usually associative approx -30eu 
Dissociative +10-20eu) 

Stahl, JACS, 2004, 14832 

Ready; Catalysis             Kinetics-Erying Equation 

Potential mechanisms: 

Small entropy of activation inconsistent 
with mechanism a. (Labeling studies 
ruled out mechanism b). 

Bergman, 1995, 6382 
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Use in asymmetric catalysis 

ln(e.r) = (ΔΔH‡/R)(1/T) – ΔΔS‡/R 
ΔΔH‡ = ΔH‡

minor - ΔH‡
major  

ΔΔS‡ = ΔS‡
minor - ΔH‡

major
 

Biggest change in selectivity with temperature 
when ΔΔH‡ dominates. 
Note with 2e, ee decrease with decreasing T  

Jacobsen, JACS, 1998, 948.  
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Practice problem: oxidative addition of ArX to Pd(0). Hartwig, JACS, 2005, 6944 

Kinetics studied for ArCl, ArBr and ArI 
 
Your job: derive rate laws for each path; determine which one(s) is(are) consistent with data. 
 

w/ PhI 

w/ PhBr: rate = [ArBr]0[L]0 

Small ΔS‡; same rate with sub. ArBr’s 

w/ArCl 

‘Lineweaver-Burk Plot’ 
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Hartwig, Science, 307, 2005, 1082 

Data: 
Rxn with ND3 showed no D 
incorporation into ligand 

Determine the mechanism for oxidative addition of ammonia to Ir(I) olefin complex 


